1. How many subsets of the set {2, 5, 9, 11} have exactly two elements?

erse y

$$(\frac{4}{2}) = \frac{4!}{2!2!} = \frac{4\cdot 3\cdot 2!}{2!2!} = 6$$

- (2). 6
- (3). 8
- (4). 4
- (5). 16

2. $\frac{2 \pm 4\sqrt{3}}{2}$ is equal to:

(1).
$$1 \pm 4\sqrt{3}$$

(2).
$$1 \pm 2\sqrt{3}$$

- (3). $2 \pm 4\sqrt{3}$
- (4). $2 \pm 2\sqrt{3}$
- (5). $\pm 3\sqrt{3}$

 $-(3xy^2 z^3)^4$ is equivalent to:

- (1). $81x^4y^8z^{12}$
- (2). $81x^5y^6z^7$
- (3). $-12x^4y^8z^{12}$

$$(4). -81x^4y^8z^{12}$$

(5). none of these

4. If (3x/2) + 6 = 0, then 2x - 1 is equal to:

$$(1) \cdot -4$$

$$\frac{3}{3}$$
× + 6 = 0

$$(3). -9$$

$$2x-1=-9$$

$$(5). -4.5$$

The expression 2x - 3[5 - 2(x - 4) + 7] is equal to 5.

(1).
$$16 - 4x$$
 $2x - 15 + 6(x - 4) - 2 = 24 - 21 = 2x - 15 + 6x = 24 - 21 =$

$$(3). 8x - 43$$

$$(4)$$
. $8x - 60$

$$(5)$$
. $4x - 6$

What is the value of $f(x) = x^2 - 3x^1 + 4x^0 - 5x^{-2} + x^{-3}$ when x = 1/2?

$$(1)$$
. $-9 1/4$

$$\left(\frac{1}{2}\right)^2 - \frac{3}{2} + 4 - 5\left(2\right)^2 + \left(2\right)^3 =$$

$$(2).$$
 8 $1/2$

$$(3). -10 1/4$$

(5). -9 1/2

The simplest form of $(a^2b + ab^2)/(2a^2b - 2ab^2)$ is:

$$\frac{ab(a+b)}{2a^{2}b-2ab^{2}} = \frac{ab(a+b)}{2ab(a-b)}$$

$$(2)$$
. $(a + b) / [2(a - b)]$

(3).
$$(a + b)/(2a - b)$$

(4).
$$(a + b) / [2(b - a)]$$

An equivalent expression for (1/x + 1/y)/(x + y) is:

(1).
$$(x + y)^2/(xy)$$

$$\begin{pmatrix} \times y \\ \times y \end{pmatrix} = \chi_{1}(0)$$

(2).
$$(x + y)^2$$

$$\frac{1}{x+y} = \frac{x+y}{x+y} = \frac{x+y}{x+y} = \frac{1}{xy(x+y)} = \frac{1}{xy}$$

$$(3). x + y$$

$$(2). -7$$

10.
$$[(a^2 - 4)/(2a + 2)] \div [(2 - a)/(1 + a)]$$
, $a \neq -1$, and $a \neq 2$, is equivalent to:

(1).
$$(a - 2)/2$$

$$(2)$$
. $-(a + 2)/2$

$$(3)$$
. $(a + 2)/2$

$$(4)$$
. $(a/2) - 1$

$$(5). (2 - a)/2$$

$$\frac{(0+2)(0-7)}{2(0-1)} \cdot \frac{9-7}{-1(9-2)}$$

The solution set for the system of equations,
$$2x + 2y = 7$$
 is:
 $4x - y = -6$,

$$(1). \{(1,-5)\}$$

$$(2). \{(1/2,3)\}$$

$$(3). \{(-1/2,4)\}$$

$$(4). \{(0,7/2)\}$$

12. When each side of a given square is increased by 4 ft., the area is increased by 64 sq. ft. The dimensions of the orginal square are:

$$(x+4)^{2} - x^{2} = 66$$

 $x^{2}+8x+16-x^{2}=64$
 $8x=48$
 $x=6$

A straight line passing through the point (0,4) is perpendicular 13. to the line x - 3y - 7 = 0. Its equation is:

(4).
$$y + 3x - 4 = 0$$

(2).
$$3y + x - 12 = 0$$

(3).
$$y + 3x + 4 = 0$$

(4).
$$3y - x - 12 = 0$$

(5).
$$y - 3x - 4 = 0$$

$$y = -3x + 6$$
 $y = -3x + 4$
 $4 = +6 \Rightarrow 6 = 14$ $y + 3x - 4 = 0$

Factor completely: $4x^2 - 4xy - 36 + y^2$

$$(1)$$
. $(2x - y + 6)(2x - y - 6)$

(2).
$$(2x + y - 6)(2x - y - 6)$$

(3).
$$(2x - y + 6)(2x + y + 6)$$

(4).
$$(2x + y + 6)(2x + y + 6)$$

$$(5)$$
. $(2x - y - 6)(2x - y - 6)$

If [(x + 1)(x - 3)] / (x + 2) < 0, then 15.

$$\frac{(x+1)(x-3)}{x+2} < 0$$

- (1). x < -1
 - (2). 3 < x

(3).
$$x < -2$$
 or $-1 < x < 3$

- (4). x can be any real number
 - (5). x = -2

16. If x and y are non-zero numbers such that x = 1 + (1/y) and y = 1 + (1/x), then y equals

- (1). x - 1
- (2). 1 x
- (3). 1 + x
- (4), -x

- (1). 50
- (2). 4
- (3).
- (4). no solution exists
- (5). there is no least value

$$4y + 5 = \times$$

18.

(1).
$$(y - x)(y + x)$$

- (3). $(1/y^2) (1/x^2)$
- (4). $x^2 + y^2$
- (5). none of the above

If
$$x < -1$$
, which of the following is equal to $|1 + x|$?

(1).-1 - x

- (2). -1 + x
- (3). 1 - x
- $(4) \cdot 1 + x$
- (5). none of the above
- Simplify the following complex fraction: 20.

$$1 - 1$$

$$1 - 1$$

$$a - 1$$

(2).
$$(a - 1)/(2a - 1)$$

$$(3)$$
. $a - 1$

$$1 - \frac{\alpha}{\alpha - 1} = \frac{\alpha - 1}{\alpha - 1} = \frac{\alpha}{\alpha - 1} = \frac{-1}{\alpha - 1}$$

- (4). (a 1)/(1 2a)
- (5). none of the above

(1). any real number

$$2ax + 2y = 7$$

(2). only the number 1

$$2ax + 2y =$$

(3). no value of a will work

(5). none of these

22.
$$(x^3 - y^3)/(x - y)$$
 reduced to lowest terms is:

$$(1)$$
. $(x - y)^2$

(2). $x^2 - y^2$

$$(3). x^2 + xy + y^2$$

$$(4). \quad x^2 - 2xy - y^2$$

(5).
$$x^2 - xy + y^2$$

The equation
$$\left[\frac{4}{3-x}\right] + \left[\frac{2x}{5+x}\right] = 1$$
 has $\frac{4}{3-x} + \frac{2x}{5+x} = 4$

(2).one real root and one imaginary root

$$\frac{20 + 4x + 6x - 2x^2}{15 - 2x - x^2} = 1$$

(3).no root.

$$\frac{20+10x-2x^2}{15-2x-x^2}=1$$

(4). two rational roots

aginary root
$$\frac{20+4x+6x-2x^{2}}{15-2x-x^{2}} = 1$$

$$\frac{20+10x-2x^{2}}{15-2x-x^{2}} = 1$$

$$\frac{20+10x-2x^{2}-1}{15-2x-x^{2}} = 1$$

$$\frac{12^{2}-4(-1)(5)}{144+20-164}$$

$$\frac{20+10x-2x^{2}-15-2x-x^{2}}{144+20-164} = 6+\sqrt{164}$$

24. Solve the following equation for x:
$$8/(x^2 - 1) = \left[4/(x - 1)\right] - \left[4/(x + 2)\right]$$

(1).
$$x = 1$$

(2).
$$x = -3$$

(3).
$$x = -2, x = 1$$

$$(4). x = -2, x = -1$$

((5). none of the above

- The three digit number 2a3 is added to the number 326 to give 25. the three digit number 5b9. If 5b9 is divisible by 9, then a + b equals:
 - (1).2
 - (2).
 - ((3).
 - (4). 8
 - 9 (5).
- If the arithmetic mean of a and b is double their geometric 26. mean, with a > b > 0, then a possible value for the ratio a/b, to the nearest integer, is:
 - (1).

(2).

 $\frac{a+b}{2} = 2\sqrt{ab}$ $\frac{a^2+2ab+b^2}{4} = ab$

(3). 11 9- Nab

(4).

 $\frac{11}{14}$ none of these $\left(\frac{a \cdot b}{4}\right)^2$ ab $\frac{a^2 \cdot 2ab \cdot b^2 - 1}{1bab} = \frac{a \cdot 14 - b}{1ba}$ $\frac{a \cdot 14 - b}{1bab} = \frac{a \cdot 14 - b}{1ba}$

- The illumination from a source of light is inversely proportional 27. to the square of the distance from the source. If a book is 8 feet from a lamp, how many feet from the lamp must it be placed in order that the illumination may be doubled?
 - $6 \sqrt{3}$ (1).
 - (2).
 - $4\sqrt{2}$ (3).
 - (4). 5 \sqrt{3}
 - $8\sqrt{2}$ (5).
- A tractor radiator contains 12 quarts of a 10% soution of alcohol 28. and water. How many quarts must be replaced by pure alcohol to make a 20% solution of alcohol and water in the a diator?
 - (1). 1 and 1/2 quarts
 - (2). 2 quarts
 - (3). 1 and 1/3 quarts
 - (4).4 quarts
 - (5). none of these

What is the solution set for the inequality $x^2 - 3x + 2 > 0$?

(1).
$$\{x; 1 < x < 2\}$$

(2). {X; x > 2}

(3). $\{x: x < 1\}$

(4). $\{x; x < 1 \text{ or }$

(5).

1. PT.

none of the above

The complement of a set A relative to a universe S is the set 30. whose elements belong to S but not to A. Suppose A is the set of non-negative integer pairs (x,y) satisfying $x^2 + y^2 < 4$, and S is the set of none-negative integer pairs (x,y) where x = 0, 1,2, or 3, and y = 0, 1, 2, or 3. How many elements are in the

(1). 4

(2). 10

(3).12

(4). infinitely many

(5). none of the above

A collection of coins consists of nickels, dimes, and quarters. 3] There are 12 more nickels than dimes and 3 less nickels than twice the number of quarters. The total value is \$6.05. number of nickels in this collection is: (1).

21

X+12 = # HERKELS

(2). 19

(3).13

(4). 25,

(5). none of the above

Which of the following is equivalent to $(7x + 3)^{-1/2}(x + 2)^{3/2}$? 32.

 $(7x^{-1/2} + 3^{-1/2})(x^{3/2} + 2^{3/2})$

 $\frac{(x+2)\sqrt{7x^2+17x+6}/(7x+3))}{\sqrt[3]{(x+2)^2}}\sqrt{(7x+3)}$ (3). $\sqrt[3]{(x+2)^2} / \sqrt{(7x+3)}$

(4). $\sqrt{(x+2)^3(7x+3)}$

(5). $(-7x/2 - 3/2)(3x/2 + 3/2) = (x+2)\sqrt{(x+2)(7x+3)} = (x+2)\sqrt{7x^2 + 17x + 6}$ 7x+3

- Tom could read the proof for the college paper in 3 hours; 33. Dick could read it in 2 hours, and Sam in 1 1/2 hours. How long would it take the three boys to read the proof together?
 - (1). 1 hour
 - (2). 1/2 hour
 - (3). 5/6 hour
 - (4).3/4 hour
 - (5).2/3 hour
- 34. y varies directly as the square of x. If x is made half as large, then y is:
 - (1). doubled

- made half as large (2).
- (3). quadrupled
- (4). unchanged
- (5). none of these
- 35. If the perimeter of rectangle ABCD is 20 inches, what is the least value the diagonal AC can be?
 - (1).0 in.

2x + 2y = 20 $x^2 + y^2 = ?$

- (2). $\sqrt{50}$ in.
- (3). 10 in.
- $\sqrt{200}$ in. (4).
- (5).none of these
- 36. If we assume that (a) all flowers are plants, and (b) no plants are mortal, we may conclude that:
 - (1). All plants are mortal.

(2).All plants are flowers.

- (3). Some flowers are mortal.
- (4). No flowers are mortal
 - (5). None of these.

- 37. The greatest lower bound of $\{5/4, 7/8, 17/16, 31/32, \dots \}$ is
 - (1). 1
 - (2). 5/4
 - (3). infinite
 - (4). does not exist
 - (5). none of these
- 38. Suppose x_1, x_2, \dots, x_n are real numbers and $\overline{x} = (1/n) \sum_{i=1}^{n} x_i$ $= (1/n) (x_1 + x_2 + \dots + x_n). \text{ Then } \sum_{i=1}^{n} (x_i \overline{x})$
 - (1). can range from 0 to $\sum_{i=1}^{n} x_i$
 - (2). is always positive
 - (3). is always zero
 - (4). can range from $-\sum_{i=1}^{n} x_i$ to $+\sum_{i=1}^{n} x_i$
 - (5). none of the above
- 39. Consider the equation $2x^2 bx 5 = 0$ with zeros x_1 and x_2 . Which of the following is true?
 - (1). If b is an odd integer, then $x_1 = x_2$.
 - (2). If b = 3, then $x_1 \div x_2 = 5/2$.
 - (3). If $x_1 + x_3 = 3$, then b = 4.
 - (4). If $x_1 = x_2 = b$, then $b = \sqrt{5}$.
 - (5). If b is any real or complex number, then $(x_1)(x_2) = -5/2$.
- 40. Suppose T is a function from the real numbers to the real numbers satisfying T(cx) = cT(x), for all numbers c and x. Which of the following is true?
 - (1). T(x) = 0 for all x
 - (2). $T(x^2) = cT(x)$ for all x
 - (3). T(x) = T(cx)/c for all c
 - (4). T(x) = xT(1) for all x
 - (5). none of the above