TMTA Calculus and Advanced Topics

1. Find the limit:

$$\lim_{x \to 0} \frac{\tan(2x)}{7x}.$$

- (a) $\frac{2}{7}$
- (b) 0
- (c) $\frac{7}{2}$
- (d) ∞
- (e) 1

2. Find the equation of the tangent line to the curve $y = \frac{x}{x^2 + 1}$ at the point (2, 0.4).

(a)
$$y = 0.25x - 0.1$$

(b)
$$y = -0.12x + 0.64$$

(c)
$$y = -0.25x + 0.9$$

(d)
$$y = -0.1x + 0.6$$

(e)
$$y = 0.1x + 0.2$$

3. Let $f(x) = \int_0^{x^3} \sqrt{t^3 + 1} dt$. Find f'(x).

(a)
$$\sqrt{x^6 + 1}$$

(b)
$$3x^2\sqrt{x^9+1}$$

(c)
$$\sqrt{x^9+1}$$

(d)
$$\sqrt{x^3+1}$$

(e)
$$x^3 \sqrt{x^3 + 1}$$

4. The following is the graph of the functions f(x), f'(x), and f''(x). Indicate which curves correspond to which functions.

- (a) f(x) is curve (1), f'(x) is curve (2), f''(x) is curve (3).
- (b) f(x) is curve (3), f'(x) is curve (1), f''(x) is curve (2).
- (c) f(x) is curve (2), f'(x) is curve (3), f''(x) is curve (1).
- (d) f(x) is curve (2), f'(x) is curve (1), f''(x) is curve (3).
- (e) f(x) is curve (1), f'(x) is curve (3), f''(x) is curve (2).
- **5.** Which of the following functions is continuous but not differentiable at x = 0?
 - (a) $\frac{1}{x}$
 - (b) $\sqrt[3]{x}$
 - (c) $\ln(x^2+1)$
 - (d) $\frac{|x|}{x}$
 - (e) None of the above

- **6.** Find the average value of the function $f(x) = \frac{1}{x^2 + 1}$ on the interval [-1, 1].
 - (a) $\frac{\pi}{4}$

 - (b) $\frac{3}{4}$ (c) $\frac{5}{6}$
 - (d) $\frac{\pi}{5}$
 - (e) None of the above
- **7.** Which of the following is NOT an antiderivative of $\sin(2x)$?
 - (a) $\frac{1}{2}(\sin^2 x \cos^2 x)$
 - (b) $\sin^2 x$
 - $(c) -\frac{1}{2}\cos(2x)$
 - (d) $-\cos^2 x$
 - (e) None of the above
- 8. Find the area of the region bounded between the curves y = 3 x, $y = 2^x$, and the y-axis.
 - (a) $\frac{3}{2} + \ln 2$
 - (b) $\frac{3}{2}$
 - (c) $\frac{5}{2} \ln 2$
 - (d) $\frac{3}{2} + \frac{1}{\ln 2}$
 - (e) $\frac{5}{2} \frac{1}{\ln 2}$
- **9.** Let $y = e^x \cos x$. Find y'.
 - (a) $-e^x \sin x$
 - (b) $-xe^x \sin x$
 - (c) $e^x(\cos x + \sin x)$
 - (d) $e^x \sin x$
 - (e) $e^x(\cos x \sin x)$

- **10.** Find all critical numbers of the function $f(x) = \frac{1}{x^2 4}$.
 - (a) 0
 - (b) -2 and 2
 - (c) There are no critical numbers.
 - (d) 0 and 2
 - (e) -2, 0, and 2
- 11. The velocity of a particle moving along the number line is given by $v(t) = 4t t^2$. Find the total distance traveled by the particle between t = 1 and t = 5 seconds.
 - (a) 8 units
 - (b) $\frac{20}{3}$ units
 - (c) $\frac{14}{3}$ units
 - (d) $\frac{34}{3}$ units
 - (e) None of the above
- **12.** Find the limit:

$$\lim_{x \to 1} \frac{1 - x^2}{x^{11} - 1}.$$

- (a) $\frac{2}{11}$
- (b) The limit does not exist.
- (c) ∞
- (d) $-\infty$
- (e) $-\frac{2}{11}$
- 13. Let f(x) be a differentiable function where f'(1) = 5 and f(1) = -2. Find the derivative of $[f(x)]^3$ evaluated at x = 1.
 - (a) -60
 - (b) 60
 - (c) 0
 - (d) -150
 - (e) 125

- 14. Consider the polynomial function $f(x) = x^4 + x^3 + cx^2 + 5$. Find all the values of c where f has no inflection points.

 - (a) $c = \frac{3}{8}$ (b) $c > \frac{3}{8}$ (c) $c \ge \frac{3}{8}$ (d) $c \le \frac{3}{8}$ (e) $c < \frac{3}{8}$
- **15.** Find the sum:

$$\sum_{n=1}^{500} \binom{1001}{n}.$$

- (a) $2^{1000} 1$
- (b) 2^{1001}
- (c) 2^{500}
- (d) $2^{1001} 1$
- (e) 2^{1000}
- **16.** Find the derivative $y = x^x$.
 - (a) $y' = x^x e^x$
 - (b) $y' = x^x (1 + e^x)$
 - (c) $y' = x^x (1 + \ln x)$
 - (d) $y' = x^x \ln x$
 - (e) $y' = x^x$
- **17.** Find the limit:

$$\lim_{n \to \infty} \left(\frac{2n+1}{2n} \right)^n$$

- (a) e
- (b) ∞
- (c) \sqrt{e}
- (d) 1
- (e) e^2

- 18. Find the measure of the acute angle, to the nearest degree, formed by the line with equation $y = \frac{1}{4}x + 2$ and the x-axis.
 - (a) 15°
 - (b) 25°
 - (c) 18°
 - (d) 11°
 - (e) 14°
- 19. Let $y = \sqrt[5]{x}$. Use the tangent line to the curve at the point (32, 2) to approximate the value of $\sqrt[5]{33}$. Round to the nearest ten thousandth.
 - (a) 2.0124
 - (b) 2.0122
 - (c) 2.0126
 - (d) 2.0125
 - (e) 2.0123
- 20. The master code on burglar alarm consists of 5 digits. How many different codes are possible if consecutive digits in the code may not be identical? For example, 12121 is a valid code, but 12212 is not.
 - (a) 15120
 - (b) 59049
 - (c) 30240
 - (d) 100000
 - (e) 65610
- 21. The amount (in milligrams) of an active ingredient in a pain reliever medication is given by the equation $y(t) = me^{-0.012t}$ in a patient's body. The value t is the number of minutes after an m milligram dose. How long does it take for there to be 15% of the initial dose remaining in the patient's body?
 - (a) 158 minutes
 - (b) 71 minutes
 - (c) 16 minutes
 - (d) 142 minutes
 - (e) None of the above

- **22.** Approximate the value of $\int_1^2 \sqrt[3]{x} \, dx$ with 4 subintervals using left endpoints.
 - (a) 1.107
 - (b) 1.166
 - (c) 1.172
 - (d) 1.140
 - (e) 1.218
- **23.** Which of the following functions is a solution to the differential equation f''(x) = f(x)?
 - (a) $f(x) = e^x \cos x$
 - (b) $f(x) = \sin x$
 - (c) $f(x) = \frac{1}{e^x}$
 - (d) $f(x) = e^x \sin x$
 - (e) $f(x) = \cos x$
- **24.** Find all of the inflection points of the curve $y = e^{-x^2}$.
 - (a) (0,1)
 - (b) $\left(-1, \frac{1}{e}\right)$ and $\left(1, \frac{1}{e}\right)$
 - (c) $\left(-\sqrt{2}, \frac{1}{e^2}\right)$ and $\left(\sqrt{2}, \frac{1}{e^2}\right)$
 - (d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{e}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{e}}\right)$
 - (e) The curve has no inflection points.
- **25.** Let $f(x) = \frac{e^x + e^{-x}}{2}$ where x > 0. Find $f^{-1}(x)$.
 - (a) $\ln(x + \sqrt{x^2 1})$
 - (b) $\ln(\sqrt{x^2+1}+x)$
 - (c) $\ln(x \sqrt{x^2 1})$
 - (d) $\frac{2}{e^x + e^{-x}}$
 - (e) $\ln(\sqrt{x^2+1}-x)$

- **26.** Let $f(x) = \sqrt[3]{x^2}$ on the interval [-8, 8]. Find all the values c guaranteed by the Mean Value Theorem.
 - (a) $\sqrt[3]{2}$
 - (b) -2 and 2
 - (c) 0
 - (d) $-\sqrt{2}$ and $\sqrt{2}$
 - (e) The Mean Value Theorem does not apply.
- **27.** Let $f(x) = \int_x^1 t^n dt$ where n is a positive integer. Find $f^{(n)}(x)$.
 - (a) -n!
 - (b) 0
 - (c) -n!x
 - (d) n!
 - (e) n!x
- **28.** Find the area under the curve $y = x + \sin x$ where $0 \le x \le \pi$.
 - (a) $\frac{23114}{3333}$
 - (b) $\frac{19}{5} + \pi$
 - (c) $2 + \frac{\pi^2}{2}$
 - (d) $\frac{2}{3} + 2\pi$
 - (e) $\frac{12\pi}{5}$
- **29.** Let $y = \sin(2x)$. Find $y^{(9)}$.
 - (a) $512\cos(2x)$
 - (b) $-512\cos(2x)$
 - (c) $\sin^9(2x)$
 - (d) $512\sin(2x)$
 - (e) $-512\sin(2x)$

- **30.** How many points of inflection does the curve $y = \sin x + \cos(2x)$ have on the interval $(0, 2\pi)$?
 - (a) 5
 - (b) 1
 - (c) 4
 - (d) 3
 - (e) 2
- **31.** A cylindrical can is required to have a volume of π cubic units. Find the height of such a can that minimizes the total surface area.
 - (a) $2\sqrt[3]{2}$
 - (b) $\frac{1}{\sqrt[3]{4}}$
 - (c) $\sqrt[3]{4}$
 - (d) $\frac{1}{\sqrt[3]{2}}$
 - (e) 1
- **32.** Consider the region contained within the first quadrant that is bounded by the line x = 1 and the curve $y = \sqrt{1 x^2} + 1$. Find the volume of the solid obtained by rotating the region about the x-axis.
 - (a) $\frac{5\pi}{3}$
 - (b) $\frac{\pi^2}{4} + \pi$
 - (c) $\frac{5\pi}{3} + \frac{\pi^2}{2}$
 - (d) $1 + \frac{\pi}{4}$
 - (e) $\frac{5\pi}{3} \frac{\pi^2}{2}$
- **33.** Find the coefficient of x^7y^5 in the expansion of $(x-2y)^{12}$.
 - (a) -792
 - (b) -4096
 - (c) 792
 - (d) -25344
 - (e) 25344

34. If $x^y = e^x$, find y'.

- (a) $\frac{\ln x}{1+e^x}$
- (b) $\frac{1}{1 + \ln x}$
- (c) $\frac{\ln(x) 1}{(\ln x)^2}$
- (d) $\frac{\ln x}{1 + \ln x}$
- (e) $\frac{e^x}{1 + \ln x}$

35. Find the value of $\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3+\cdots}}}}$.

- (a) $\frac{4\sqrt{3}}{3}$
- (b) $\frac{23}{10}$
- (c) $\frac{1+\sqrt{13}}{2}$
- (d) $\frac{7\sqrt{7}}{8}$
- (e) $\frac{3\pi}{4}$

36. Find the limit:

$$\lim_{x \to 0} \frac{x^5 + x^3 - 3x + 3\tan^{-1} x}{x^5}.$$

- (a) $-\infty$
- (b) ∞
- (c) $\frac{8}{5}$ (d) $\frac{\pi}{2}$
- (e) 0

37. When an oven is set at 300°F, its actual temperature as a function of time is

$$T(t) = 300 + 25\cos\left(\frac{t\pi}{20}\right)$$

where t is the number of minutes since the oven finished preheating. What is the average temperature of the oven between times t = 0 and t = 30?

- (a) $300 + \frac{25}{3\pi}$
- (b) 300
- (c) $300 + \frac{50}{3\pi}$ (d) $300 \frac{25}{3\pi}$ (e) $300 \frac{50}{3\pi}$

- **38.** The graph below depicts the curve $y = 4x x^2$ and the line through the origin and the point P. Find the x-coordinate of the point P if the regions R_1 and R_2 have equal area.

- (a) π
- (b) $\sqrt{10}$
- (c) $\frac{16}{5}$
- (e) $\sqrt[3]{32}$

39. Find the limit:

$$\lim_{n\to\infty}\frac{2}{n}\sum_{k=1}^n e^{\frac{4k}{n}}$$

- (a) $2e^4$
- (b) $\frac{1}{2}(e^4-1)$
- (c) $2(e^4-1)$
- (d) e^4
- (e) $e^4 1$
- 40. The size of a population of squirrels in a park can be modeled by the equation

$$y = \frac{2000}{1 + 199e^{-0.21t}}$$

where t is the number of years since 2000. For which value of t is the population of squirrels growing the fastest?

- (a) 25.3
- (b) 24.9
- (c) 25.2
- (d) 25.0
- (e) 25.1